Alternatives to backprop

Daniel Jiang

with some help from Brian Cheung, Redwood Center for Theoretical Neuroscience

Outline

- 1. Deep learning limitations
- 2. Two specific alternatives to backprop:
 - a. Decoupled neural interfaces
 - b. Feedback alignment
- 3. Other alternatives

Deep learning has limitations and issues

- Requires tons of labeled data, not good at online learning, synchronous (and slow) forward and backward passes, vanishing and exploding gradients, highly-sensitive to non-stationary distributions, requires everything to be differentiable, highly-susceptible to over-fitting, not efficient for distributed computation, bad at learning dependencies over time, etc.
- Limitations demonstrated by <u>https://www.reddit.com/r/ProgrammerHumor/comments/8t011g/machine_l</u> <u>earning_irl/</u>
- Things we could learn from the brain: local learning rules, meta-learning, unsupervised learning, asynchronous and distributed computation, ...
- We should explore out-of-the-box ideas

Backprop. since 1986...

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

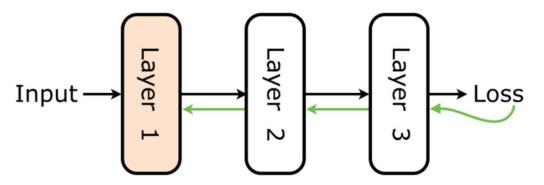
* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

Paper #1: Decoupled neural interfaces

• Decoupled Neural Interfaces using Synthetic Gradients. M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, K. Kavukcuoglu. International Conference on Machine Learning (ICML), 2017.

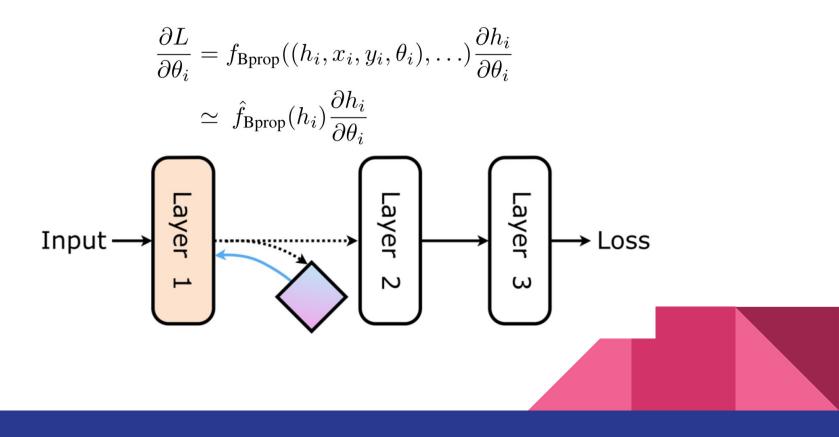
Decoupled neural interfaces - Introduction

• Problem: Neural network layers are locked to each other. An example where this is an issue is when the output of a network is used by many downstream clients; in order to update, have to wait for slowest client.

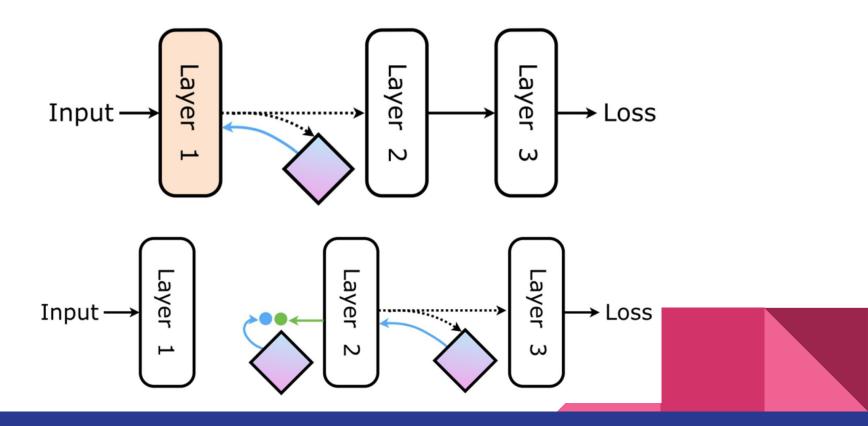


• Solution: Learn a parametric model which predicts what the gradients will be based upon only local information

Decoupled neural interfaces - Illustrated



Decoupled neural interfaces - Illustrated

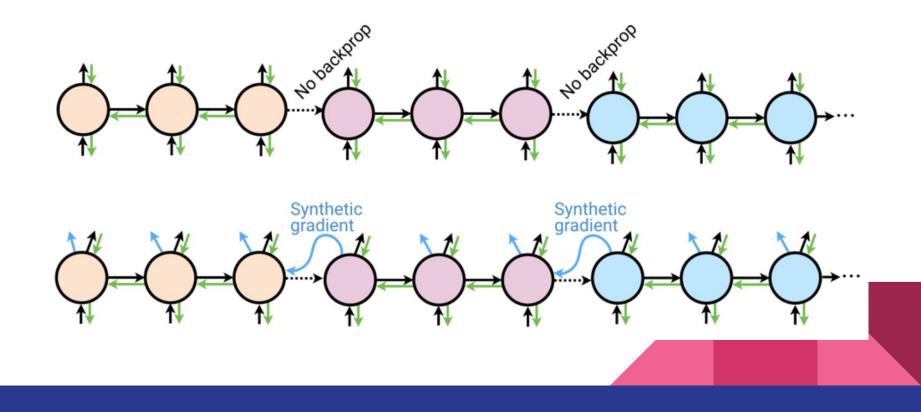


Decoupled neural interfaces

Decoupled neural interfaces - RNNs

$$\theta - \alpha \sum_{\tau=t}^{\infty} \frac{\partial L_{\tau}}{\partial \theta} = \theta - \alpha \left(\sum_{\tau=t}^{t+T} \frac{\partial L_{\tau}}{\partial \theta} + \left(\sum_{\tau=T+1}^{\infty} \frac{\partial L_{\tau}}{\partial h_T}\right) \frac{\partial h_T}{\partial \theta}\right)$$
$$= \theta - \alpha \left(\sum_{\tau=t}^{t+T} \frac{\partial L_{\tau}}{\partial \theta} + \delta_T \frac{\partial h_T}{\partial \theta}\right)$$

Decoupled neural interfaces - RNNs



Decoupled neural interfaces - Details

- DNI is trained by minimizing the Euclidean distance to the target gradient
- DNI can be one layer
- DNIs are trained to target the backpropagated outputs of downstream DNIs

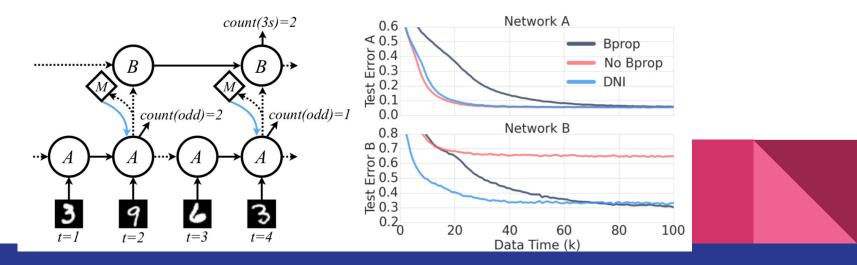
Decoupled neural interfaces - Experiment 1

- Copy: read sequence of N characters, then repeat the sequence
- **Repeat copy**: read sequence of N characters and number R, then repeat the character sequence R times
- Values in the table are "maximum sequence length that was successfully modelled"

BPTT					5) 	DNI						DNI + Aux					
T =	2	3	4	5	8	20	40	2	3	4	5	8	2	3	4	5	8
Сору	7	8	10	8	-	-	-	16	14	18	18	-	16	17	19	18	-
Copy Repeat Copy	7	5	19	23	-	-	-	39	33	39	59	-	39	59	67	59	-
Penn Treebank	1.39	1.38	1.37	1.37	1.35	1.35	1.34	1.37	1.36	1.35	1.35	1.34	1.37	1.36	1.35	1.35	1.33
2																	

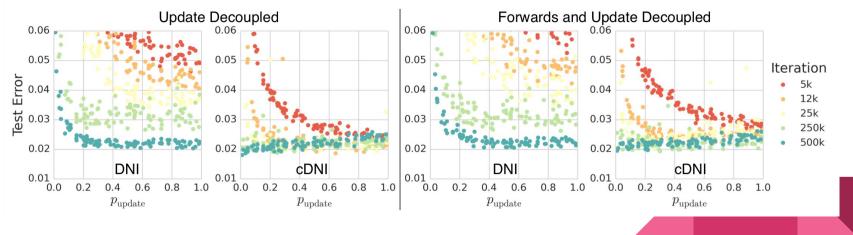
Decoupled neural interfaces - Experiment 2

 Network A sees a stream of MNIST digits and must output the number of odd digits seen every T steps. Network B runs every T steps, takes a message from Network A as input and must output the number of 3s seen over the last T² steps.



Decoupled neural interfaces - Experiment 3

- Four layer FCNs
- Each layer has probability p_{update} of actually updating
- cDNI means that the DNI is conditioned on the label as well

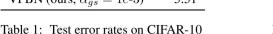


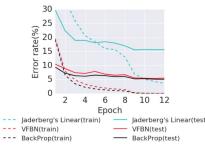
Decoupled neural interfaces - Extensions

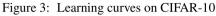
• Synthetic Gradient Methods with Virtual Forward-Backward Networks. T. Miyato, D. Okanohara, S. Maeda, K. Masanori. *International Conference on Learning Representations (ICLR)*, 2017.

 $\delta_{l}(h, y) := \frac{\partial \ell(y, fwd(h))}{\partial h} = bwd(h) \times (\partial_{fwd(h)}\ell(y, fwd(h)))$ $\delta_{l}(h, y)_{\text{VFBN}} := v'_{f}(h) \times \partial_{v_{f}(h)}\ell(y, v_{f}(h))$

Test er	ror (%)			
BackProp Bottom half with back prop	5.15 5.76			
Layer-wise supervised loss	5.71			
(Synthetic Gradient models) Jaderberg's small-ResNet Jaderberg's Linear VFBN (ours, $\alpha_{gs} = 0$) VFBN (ours, $\alpha_{gs} = 1e$ -3)	20.45 15.56 5.73 5.51			





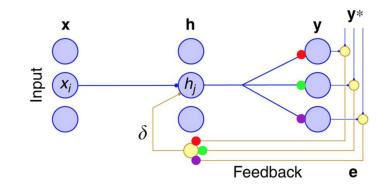


Paper #2: Feedback alignment

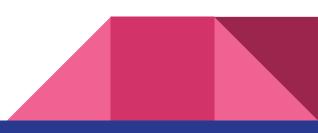
• Random synaptic feedback weights support error backpropagation for deep learning. T. P. Lillicrap, D. Cownden, D. B. Tweed, C. J. Akerman. *Nature Communications*, 2016

Feedback alignment - Introduction

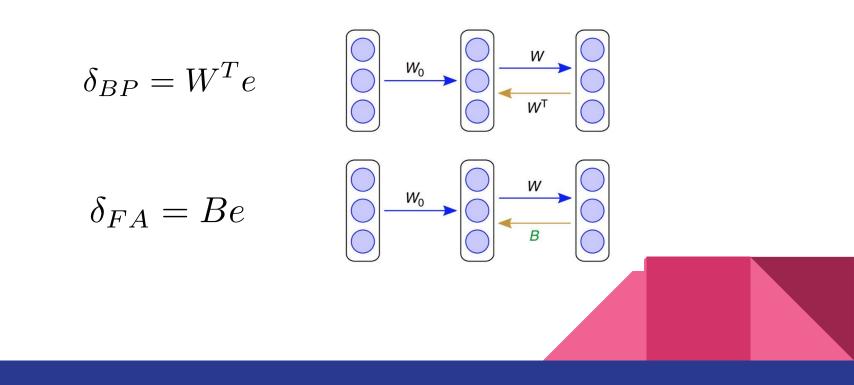
• Problem: Our brains can't realistically implement backprop for many reasons. One of them is the *weight transport problem*.



• Solution: Use random matrices for backprop.



Feedback alignment - Illustrated

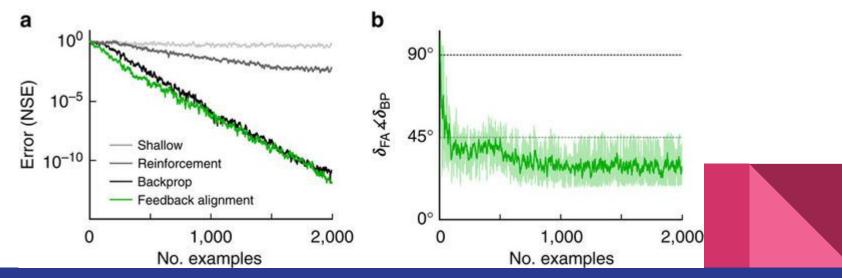


Feedback alignment - Key insights

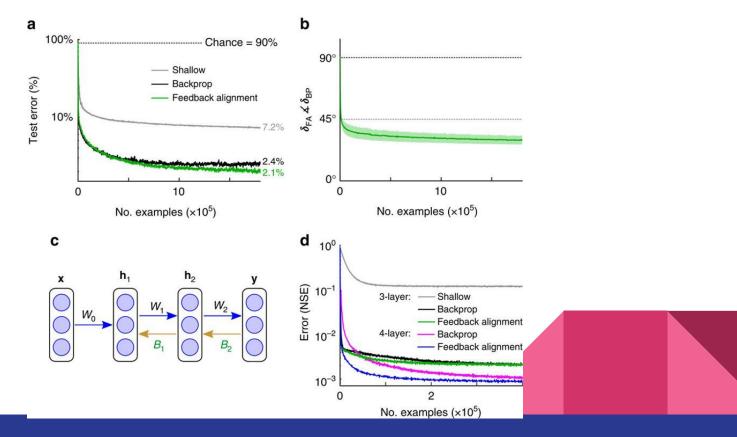
- 1. All that is necessary is that $\delta_{BP} \cdot \delta_{FA} = (W^T e)^T B e > 0$
 - a. i.e. the error signals are within 90 degrees of each other
- 2. The network could bring B and W into alignment

Feedback alignment - Experiment 1

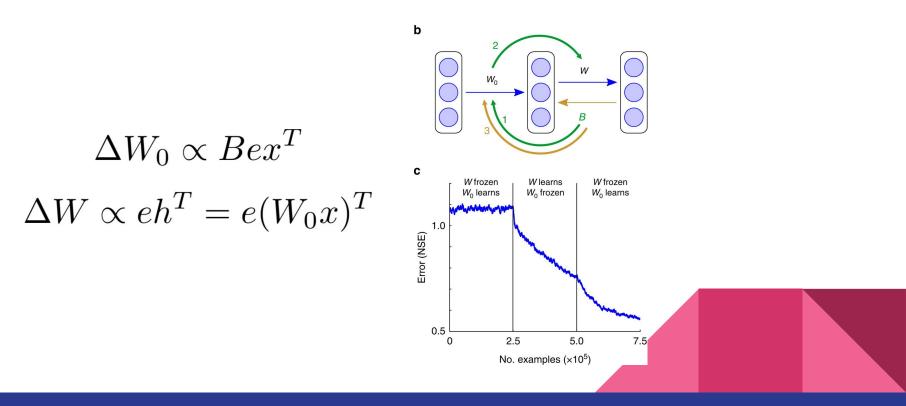
- Setup: linear 3-layer networks targeting a linear function
 - Shallow: only last set of weights train; Reinforcement: "fast form of reinforcement learning that delivers the same reward to each neuron"; Backprop: backprop; Feedback alignment: feedback alignment



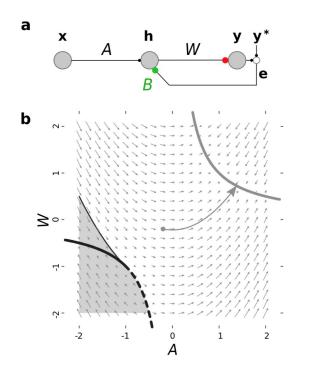
Feedback alignment - Experiment 2



Feedback alignment - Experimental analysis

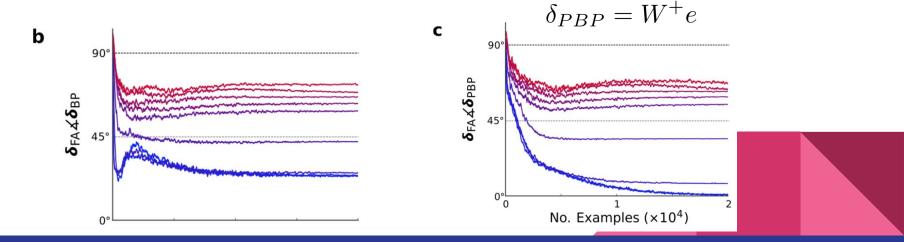


Feedback alignment - Experimental analysis



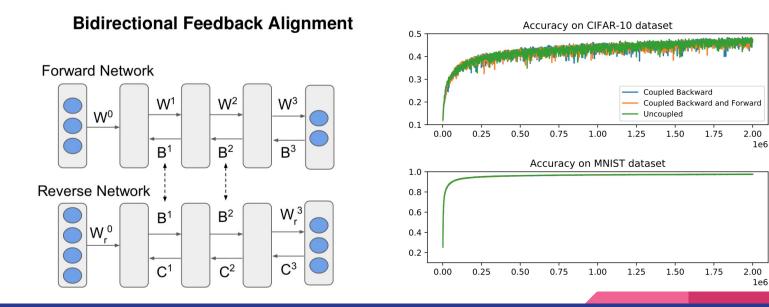
Feedback alignment - Analysis

- Intuitively, might think that FA is a sub-optimal approx of BP
- However, FA encourages W to act like a local pseudoinverse of B around the error manifold, which would suggest something similar to Gauss-Newton optimization (2nd order learning)



Feedback alignment - Extensions

The many directions of feedback alignment. B. Cheung, D. L. Jiang. Submitted to *Conference on Cognitive Computational Neuroscience (CCN)* 2018.



Other methods

- Target propagation and difference target propagation (D. Lee, S. Zhang, A. Fischer, Y. Bengio. 2015)
- Equilibrium propagation (B. Scellier, Y. Bengio. 2017)
- Kickback (D. Balduzzi, H. Vanchinathan, J. Buhmann. 2014)
- Differentiable plasticity (T. Miconi, J. Clune, K. O. Stanley. 2018)

Science progresses one funeral at a time

 "Max Planck said, 'Science progresses one funeral at a time.' The future depends on some graduate student who is deeply suspicious of everything I have said." - Geoffrey Hinton

